
 Page 1/8

Real Time on Moblin/Linux

Yannick MEYER1 (main author), Abdelillah YMLAHI OUAZZANI1

1: ESG Automotive France, Centre Paris Pleyel – 153, Boulevard Anatole France - 93521 - Saint-Denis Cedex

Abstract: The automotive manufacturers are more
than ever facing many challenges. With the
tremendous involvement of electronics in the
achievement of end-customers needs, automotive
suppliers must accommodate themselves to the
constantly changing features of carmakers.
Infotainment is one of the most challenging fields,
where the carmakers and suppliers realized that the
use of a dedicated platform for each new car is no
longer possible. This is why the GENIVI alliance was
founded on March 2nd, 2009 with the goal of
establishing an open platform for the automotive in-
vehicle infotainment industry.

GENIVI's strategy is to use Moblin as the baseline
code within its reference implementation. Moblin is a
Linux-based distribution designed for mobile devices
and can perfectly be used in embedded devices
such as those targeted by the infotainment industry.

In this paper we experiment the real-time
performances of Moblin as a standalone operating
system and show how those performances can be
improved by means of adding some customized real-
time extensions. The main contribution of this work is
to outline how those extensions are in fact necessary
to comply with the real-time constraints required by
automotive hosts on which infotainment applications
are embedded.

Keywords: Infotainment, Genivi, Moblin, Linux real-
time, latency measurements

1. Introduction

GENIVI is self-described as a non-profit industry
alliance committed to create and promote an In-
Vehicle Infotainment (IVI) reference platform. The
platform consists of Linux-based core services,
middleware, and open application layer interfaces. It
establishes a base upon which carmakers and
suppliers can add their variety of products and
services.

At ESG, we anticipated at early stage the
development of an automotive infotainment platform
similar to what GENIVI alliance would expect. We
invested ourselves in technical training and purchase
of a "GENIVI-like" platform and started evaluating its
software and hardware performances. After few

weeks of evaluations, we explicitly expressed our
motivation to actively participate in the development
of automotive Infotainment architectures within the
GENIVI alliance and we joined it as associate
member on January 2010.

Moblin is an open source operating system, acting
as an independent distribution for the first GENIVI
open source implementation. The combination of the
Moblin and GENIVI codes will be used to provide
carmakers and suppliers with an automotive
infotainment reference platform mixing the best from
both consumer and automotive worlds.

Moblin is Intel's open source initiative project created
to develop software for the next generation of mobile
devices including Netbooks, Mobile Internet Devices,
and In-vehicle infotainment systems based on Intel’s
Atom target processor.

In automotive field, any embedded software system
must deliver both speed and accuracy. Speed is
needed to run large bodies of software ECUs,
including real-time operating systems and network
protocol stacks. Accuracy, reflected by the latency
time, is needed to ensure correct and predictable
behavior in the vehicle. In fact, deterministic latency
time is one of the core requirements of “hard" real-
time constraints.

In contrast to those "hard" constraints, Linux and
mostly all distributions based on it satisfy only "soft"
real-time requirements. For example, Linux can
provide speed to manage tasks priorities but with
unpredictable latency time, varying from less than
one millisecond in most cases up to several
milliseconds in some others.

Missing a deadline in “hard” real-time requirements
implies a catastrophic behavior (like activating a
security airbag too late in time). In “soft” real-time
requirements such a missing causes system failure
but doesn’t alter the general behavior (like losing a
video frame or gps connection).

In this paper, we report our experience in evaluating
the real-time capabilities of Moblin v.2.0b3 on a
generic infotainment platform composed of the
following peripherals:

 Page 2/8

• Processor: the Intel Atom Z530 (1.6 GHz)

• Memory : 1GB RAM DDR2, 2GB Flash

• Display : VGA touch screen

• Audio : HD-Audio

• Connectivity: Ethernet, GPS antenna, CAN

• Misc: 8 x USB 2.0, RS232/422/485, GPIO

In addition to that, we used an external board called
"Measurement Board" to stimulate the "Moblin
platform" and measure its reaction time to the input
stimulus.

We tested first the real-time behavior of Moblin-Linux
APIs to point out its limitations. Then we added the
real-time extensions RTAI and XENOMAI (Cf. §.5
and §.6), once at a time, and evaluated again the
new behavior.

The rest of the paper is organized as follows.
Section 2 describes the testing methods. Section 3 is
dedicated to the real-time capabilities of Moblin.
Section 4 explains how the real-time extensions can
be added to Linux. Section 5 and 6 discuss the real-
time performances of Moblin with the real-time
extensions RTAI and XENOMAI respectively, and
Section 7 concludes.

2. Testing methods

2.1 Preparation

We reserved the first activity of this project to the
building of the Moblin image from the kernel source
package kernel-2.6.29.4-6.1.moblin2.src.rpm
available online at Moblin’s repository [3]. Then, with
some few adjustments, we were able to drive the
hardware platform.

The second activity consisted in setting up the test
bench by connecting the "Moblin platform" to the
"Measurement Board". Figure 1 illustrates how we
connected the boards; the hardware connection was
ensured by a serial RS232 cable for data exchange
and a double wired cable to control a GPIO pin.

Figure 1: Hardware connections setup

The reason behind choosing the serial
communication device rather than any other way
(CAN, Timer…) is its hardware availability on the
measurement board.

The evaluation of the real-time capabilities of the
“Moblin platform” is composed of two sets of tests:

• Measuring the latency time the “Moblin
platform” takes before responding to an
external event.

• Measuring the scheduling time of a periodic
task implemented in the “Moblin platform”.

Those two tests cover mostly all cases in which
embedded software is to be used. In the next sub-
sections we explain the tests design and setup.

2.2 Measurement of the latency time in response to
an external event

The main purpose of this test is to measure the
minimal, average and maximal latency time
consumed by the “Moblin Platform” before it reacts
to an external event. Figure 2 shows how we
designed this test.

Figure 2: Latency time measurement test cycle

We stimulated the “Moblin platform” by an external
event generated by the “Measurement board”. The
event consisted in sending a character through the
serial communication device. We saved the time
stamp when the character was released on the
“Measurement board”. We labeled it the “Test
starting time”. Upon the reception of that character,
the “Moblin platform” toggled the GPIO pin, the
“Measurement board” detected this change of state
immediately and saved its occurrence time as the
“Test ending time”.

Based on the “Test starting time” and the “Test
ending time”, the “Measurement board” calculated
the “latency time” and sent it back to the “Moblin
platform” through the RS232.

Finally, we compared the obtained results to the
reference value of 40µs which reflects a targeted
value of the system at early characterization phases.

 Page 3/8

The way we found this reference value is outside the
scope of this document.

2.3 Measurement of the scheduling time of a periodic
task

The main objective of this test is to measure how
accurate is the management of internal scheduling of
tasks within the “Moblin platform”. Figure 3 depicts
the test design.

Figure 3: Periodic task scheduling test

We implemented a periodic task which consisted in
changing the state of a GPIO pin in the “Moblin
platform”. We were interested in calculating the
periodicity of this task when the “Moblin platform”
was “lightly” and “fully” loaded. (Cf. §2.4)

We configured the “Measurement board” to calculate
the time separating two consecutive GPIO rising
edges and transmit this time back to the “Moblin
platform” for measurement statistics accumulation.

Finally, we compared the cumulated statistics to the
task reference period; the acceptance range has
been set from -5% below to +5% above that
reference period.

2.4 Tests conditions

We ran the set of tests described above in different
configurations to simulate multiple environments
where the infotainment applications can be
incorporated. Intel’s Atom processor CPU frequency
can be adjusted on the fly from 800 MHz to 1.6 GHz
depending on the system load. For the purpose of
tests we have chosen to run at known frequency.

We evaluated the application test in both “light” and
“full” loads configurations.

We define the “light” load configuration as the case
when only the test application process is running
along with Moblin on the “Moblin platform”.

We define the “full” load configuration as the case
when the test application process is sharing the
100% CPU load with two other hardware resources
consuming processes: one is reading endlessly a
USB memory stick and the other one is incrementing
a counter. We set up the test application process
with the highest priority level over all other
processes.

Note: We have chosen the USB key reading
process in order to put the system in interaction with
an external environment, like that, the reading
process preempted the kernel scheduling constantly.

3. Real-time capabilities of Moblin-Linux

This first experiment evaluates the real-time
performances of Moblin-Linux APIs. The test
application uses the Linux native APIs and the real-
time parts (latency or task scheduling) use specific
drivers to achieve the test objectives. In this case the
drivers are also using the Linux-APIs. The detailed
architecture is shown below:

Figure 4: Test application with Linux APIs architecture

We set up the CPU frequency at 1.6 GHz and we
ran the test application in “light” load configuration.

3.1 Latency time measurement test

We tested one million samples, for each sample we
calculated the latency time of the “Moblin platform”.
The cumulated statistics are shown in Figure 5.

 Page 4/8

Figure 5: Moblin latency time test results

We found that almost 90% of samples had a latency
time less than 40µs, whereas almost 1% of samples
had that time higher than 5,5 ms. the latest 1%
samples don’t comply with the real-time deterministic
requirement.

3.2 Periodic task scheduling measurement test

We ran the periodic task scheduling test one million
cycles, each time we saved the task activation
period in the “Moblin platform”.

The smallest timer period that can be configured in
“Moblin platform” is 1ms, so we set the task
reference period to 2ms. The cumulated statistics
are illustrated in Figure 6.

Figure 6: Moblin periodic task scheduling test results

The y-axis is given in a logarithmic scale. This graph
shows that almost 98 % of calculated periods were
from -3.5% to +2.6% around the expected value.
However we noticed a high dispersion of all
remaining values, which means that Moblin is not
managing the task scheduling uniformly. In addition
to that, more than 2000 samples had their periods

170% above the reference period (the peak on the
right side) and this was out of the tolerated range.

Note: the maximum value that the “Measurement
Board” can return is 5,5 ms. In other words, the real
maximum latency time and task scheduling period
values observed are in fact higher than the 5,5 ms
limit reached in tests.

3.3 Assessment

Those two tests demonstrated the weaknesses of
Moblin with respect to real-time constraints. Linux
lacks determinism in response to interrupt events,
and it can not manage periodic tasks scheduling
adequately.

Moblin can not then be categorized in “hard” real-
time systems class because it can not afford the
desired deadlines of real-time tasks. However it can
be considered to support the expected deadlines on
average since it has an average time response
lesser than 50µs; this is why it is said to belong to
“soft” real-time systems class.

In the next section we will discuss how Moblin’s real-
time capabilities can be hardened by means of real-
time extensions.

4. Adding a real-time extension to Linux

There are several options available to enhance the
real-time features of Linux, some of these are based
on Linux alone (changing the kernel configuration),
some use Linux with an additional sub-kernel, and
since kernel 2.6 software patches are used to
improve the real-time behavior of Linux. Here we
focus our study on the configuration of Linux with a
sub-kernel; this technique consists in using a second
kernel as an abstraction layer between the hardware
and the Linux kernel. The non-real-time Linux kernel
runs in the background as a lower-priority task of the
sub kernel and manages all non-real-time tasks. The
real-time tasks are processed by the sub kernel.
(See Figure.7)

 Page 5/8

Figure 7: The real-time extension approach

Among all solutions we have chosen the RTAI and
XENOMAI sub-kernels. We configured those
extensions to run on the “Moblin platform”.

The test application uses the Linux native APIs and
the real-time parts (latency or task scheduling) use
specific drivers to achieve the test objectives. In this
case the drivers are using the real-time APIs instead
of the Linux APIs. The detailed architecture is shown
below:

Figure 8: Test application with Linux and real-time APIs

architecture

We executed the same set of tests already
described in section 2 to evaluate their added-values
in improving the real-time performances of Moblin.

5. Real-time capabilities of Moblin + RTAI

RTAI stands for Real-Time Application Interface. It is
a real-time extension for the Linux kernel, we setup
and configured Moblin + RTAI to get it running on
the platform.

5.1 Latency time measurement test

We carried out the latency time measurement test on
lightly and fully loaded systems at both 800 MHz and
1,6 GHz CPU frequencies. We tested one million
samples, for each sample we recorded the latency
time. The total statistics are represented by Figures
9 and 10.

 Figure 9: Moblin + RTAI latency time at 800 MHz

At 800 MHz, the dashed line graph represents the
response of a fully loaded system; in this case the
average latency time was 13,8 µs with 99% of
samples below 28,8 µs.

The straight-line graph represents the response of a
lightly loaded system; the average latency time was
20,3 µs with 99% of samples below 33,1 µs. Two
peaks centered on 13 µs and 24 µs were detected,
the reason behind is due to the internal architecture
of the Intel’s atom processor. Indeed, we noticed that
when the processor is not fully loaded it goes into a
sleep state and the response to an external event is
then delayed by the wake-up time the processor
takes before resuming normal operations.

Figure 10: Moblin + RTAI latency time at 1,6 GHz

 Page 6/8

At 1,6 GHz, the dashed line graph represents the
response of a fully loaded system; the average
latency time was 13,3 µs with 99% of samples below
32,1 µs, the main difference compared to the 800
MHz case was that the values were more squeezed
to the left and the average was slightly smaller.

The straight-line graph represents the case of a
lightly loaded system; the average latency time was
15,6 µs with 99% of samples below 25,5 µs, which
means that the performance has been improved by
25% compared to the 800 MHz case.

Most of the samples were between 10 and 15 µs
and here also we observed another small peak
around 23 µs, this was caused by the processor
wakeup time.

Note: Only 0.1% of measured samples exceeds the
reference latency time of 40 µs but remains below
100 µs.

5.2 Periodic task scheduling measurement test

We set the task reference period to 2.5 ms, we
carried out the periodic task scheduling test one
million cycles; at each cycle we recorded the task
activation period in the “Moblin platform”.

The cumulated statistics are illustrated in Figures 11
and 12.

Figure 11: Moblin + RTAI periodic task at 800 MHz

At 800 MHz, the graphs almost matched, for both
fully and lightly loaded systems 98 % of samples
were from -0.6% to 0.54% around the reference
period.

 Figure 12: Moblin + RTAI periodic task at 1.6 GHz

At 1,6 GHz, for a fully loaded system, 98% of values
were from -0.16% to 0.17% around the reference
period.

For a lightly loaded system, 98 % of values were
from -0.16% to 3.15% around the reference period.
In this case we noticed a high dispersion of values
above the expected period.

5.3 Assessment

We obtained the best real-time performances of
Moblin plus RTAI extension with fully loaded
systems. RTAI improved the Moblin management of
external events but lacked determinism in scheduling
periodic tasks.

6. Real-time capabilities of Moblin +
XENOMAI

XENOMAI is a real-time extension cooperating with
the Linux kernel, newer than RTAI and more “hard”
real-time oriented. We setup and configured Moblin
+ XENOMAI to get it running on the platform.

6.1 Latency time measurement test

We carried out the latency time measurement test on
lightly and fully loaded systems at both 800 MHz and
1,6 GHz CPU frequencies. We evaluated one million
samples. The total statistics are depicted by Figures
13 and 14.

 Page 7/8

Figure 13: Moblin + Xenomai latency at 800 MHz

At 800 MHz, fully loaded system has an average
latency time of 14 µs with 99% of samples below
19,1 µs while lightly loaded system has an average
latency time of 16,2µs with 99% of samples below
25,8µs.

Like RTAI, we observed another peak due to the
processor low power mode around 23 µs.

Figure 14: Moblin + Xenomai latency time at 1,6 GHz

At 1,6 GHz, fully loaded system has an average
latency time of 13 µs with 99% of samples below
29,8 µs; while lightly loaded system has an average
latency time of 23,6 µs with 99% of samples below
32,5 µs. Most of the samples were between 20 and
30µs. Here again we have seen a small peak around
13µs due to the processor internal architecture.

Note: Only 0.1% of measured samples exceeds the
reference latency time of 40 µs but remains below
100 µs.

6.2 Periodic task scheduling measurement test

We performed the periodic task scheduling test one
million cycles, at each cycle we recorded the task
activation period in the “Moblin platform”. The
cumulated statistics are illustrated in Figures 15 and
16.

Figure 15: Moblin + Xenomai periodic task at 800 MHz

At 800 MHz, both fully and lightly loaded systems
had 98% of samples situated from between -0.6%
and 0.56% around the reference period.

Figure 16: Moblin + Xenomai periodic at 1.6 GHz

At 1.6GHz, fully loaded system has 98 % of values
located at +/- 0.2% around the reference period,
while lightly loaded system has 98% of samples from
-2.4% to 2.9% around the expected value.

In the second case, due to the processor low power
mode, we noticed a dispersion of values but the
average remained acceptable.

 Page 8/8

6.3 Assessment

The best real-time performances of Moblin +
XENOMAI extension were obtained with both fully
and lightly loaded systems; XENOMAI is
deterministic with respect to “hard“ real-time
constraints governing the handling of external events
and the scheduling of periodic tasks.

7. Conclusion

Many Linux real-time extensions and distributions
are becoming available, they are responding to the
high technical use of embedded Linux in various
domains. Since multiple approaches are available, it
is obvious that no one solution will serve all
applications best. In this paper, we have evaluated
and tested the real-time extensions RTAI and
XENOMAI with Moblin in different configurations. We
outlined the limitations of Moblin and the RTAI
approach and highlighted how XENOMAI is
improving the real-time behavior of Moblin, enabling
it to satisfy some “hard” real-time constraints. Other
solutions based on kernel patches will be addressed
in future work.

8. Acknowledgement

We would like to express our warm thanks and
regards to our CTO Mr. Thierry SEYNAEVE and the
embedded software department head Mr. Thierry
BOUQUIER for their guidance and encouragement
throughout this project.

We are also grateful to our mother company ESG-
GERMANY for providing financial support to this
project.

9. References

[1] C. Blaess: "Programmation système en C sous
Linux ", 2

nd
 edition, Eyrolles, 2005.

[2] P. Ficheux: "Linux embarqué", 2
nd

 edition, Eyrolles,
2005.

[3] Moblin repository:
http://repo.moblin.org/moblin/releases/

[4] Xenomai project’s web site:

 http://www.xenomai.org

[5] Rtai project’s web site:

 http://www.rtai.org/

10. Glossary

OS: Operating System

ECU: Electronic Control Unit

RAM: Random Access Memory

CAN: Controller Area Network

API: Application Programming Interface

CPU: Central Processing Unit

CTO: Chief Technical Officer

GPIO: General Purpose Input/Output

RS232: Computer serial line (Recommended Standard

232)
USB: Universal Serial Bus

